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It is known that if a smooth function h in two real variables x and y belongs to
the class In of all sums of the form I:Z~I fk(x) gdy), then its (n+ l)th order
"Wronskian" det[hX'yJnJ~o is identically equal to zero. The present paper deals
with the approximation problem h(x, y) "" I:Z ~ J .Ik(x) gk(Y) with a prescribed n,
for general smooth functions h not lying in Ln' Two natural approximation sums
T= T(h) E In' S = S(h) E In are introduced and the errors Ih - TI, Ih - SI are
estimated by means of the above mentioned Wronskian of the function h. The
proofs utilize the technique of ordinary linear differential equations. g 1994

Academic Press, Joe,

1. INTRODUCTION. STATEMENT OF THE PROBLEM

Scalar functions of the form

n

L h(x) gk(Y)
k~ I

(1 )

arise in many areas of pure and applied mathematics (see [3]).
C. M. Stephanos [9] was probably the first who introduced the Wronski
like matrices built from the partial derivatives of a given two-place function
h=h(x, y)

(:,
Wn= Wn(h) := :

h,n~1

h"n-J )
hx,n-l

hx"-:Iy"~1
(n = 1, 2, ... ) (2)

and who observed that each (smooth) function h representable by a sum
(1) has to satisfy the equation det Wn + I == O. A more precise and complete
assertion given by Neuman in [5] can be stated as the following
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Theorem A, Throughout the paper, n = 1, 2, ,.. is a fixed integer, 1= [a, b]
and] = [c, d] are two compact intervals in IR and the function h: I x ] - IR
is assumed to have the partial derivative hx"yn continuous on I x],

THEOREM A, If h is of the form (1), then det Wn + 1 == 0 on I x ],
Conversely, if

(3)

and

at each point (x, y) E Ix],

then h is of the form (l), with linearly independent components.h and gk'

Proof see [5, Thm. 1] or [3, Thm. 3.1].

Remark 1. Rassias [7] gave a counter-example showing that the
Stl~phanos condition det Wn + I == 0 is not sufficient for h to be of the form
(1) if there exist some zeros of det Wn (but not det Wn == 0), As a by
product of our considerations, we establish a new differential criterion for
h to be of type (1), applicable just in the case when det Wn has at least one
non-zero value in the rectangle I x ] (Theorem 3 in Section 3).

Remark 2. A non-trivial extension of Theorem A to the case of multi
dimensional x and y was established in [2]. For the functions of more than
two variables, the decompositions like (l) were discussed in [1, 6].

This paper is concerned with the approximation problem

n

h(x, y)::::::: L .h(x) gk(Y)
k=1

(4)

which seems to be of interest for each function h not permitting any exact
representation (1). We start our procedure by introducing two natural
approximating sums T = T(h) and 5 = 5(h), analogous to Taylor series and
the interpolation polynomials, respectively (see Section 2). As shown in
Section 3, the corresponding errors h - T and h - 5 can be represented by
formulas that resemble the Lagrange form for errors in polynomial
approximations, The bounds for the errors Ih - TI and Ih - 5/ of different
types are stated in Section 4, The proofs of a part of them are postponed
to Section 6, because they need fine estimates for some Wronski-like deter
minants discussed in Section 5. The result proved in Section 6 will lead to
the conclusion that the condition (3) of Theorem A is "stable" in the
following sense: If the approximated function h satisfies
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(5)

for each (x, y) E Ix J,

with some "small" constant e, then the sup-norms (supremum norms) of
the errors h - T and h - S are of order e, too.

Remark 3. While the problem of the best L 2-approximation (4), with a
prescribed number n of products of arbitrary functions fk and gb has been
recently solved in [8], the problem of the best approximation (4) with
respect to the sup-norm seems to be still open.

2. Two TYPES OF ApPROXIMATING SUMS

In this section, we deal with the problem of creating suitable approxima
tions (4). As usual on other occasions, we determine such approximations
by imposing some coincidence conditions. In this way, we introduce two
natural (and as the paper shows, also effective) approximations T and S
(see (7) and (12) below).

(i) Suppose that det Wn(XO' Yoht 0 for some fixed XoE I and Yo E J.
Let us show that the (unique) function T: I x J -+ IR of the form (1) that
satisfies 2n functional conditions

and

can be written as a matrix product

(O~j~n-l) (6)

(

h(xo, y) )
-1 hAxo, y)

T(x, y) = (h(x, Yo), hv(x, Yo), ..., h,I'-l(X, Yo» . Wn (xo, Yo) . : '

hxn-t(xo, y)

(7)

where W; 1 denotes the inverse of the matrix Wn • Indeed, if T is as in (1)
and satisfies (6), then
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n

hAxo, .) = L fl!)(xo) gk
k~1

379

(8)

n

hyi (" Yo) = L gl!)(Yo)j~
k~l

(O~j~n-l).

We may consider (8) as two linear algebraic systems with unknowns
gl' gz, ..., gn and it,h, ...,j", respectively. Note that the matrices of these
systems

j,,(xo) )
f~(xo)

.:: f~n-:I)(xo)

and

gn(YO) )
g~(yo)

g~n- ;l(yo)

are non-singular, because (8) implies that

and WAxo, Yo) is supposed to be non-singular. Hence (8) yields

and

(9)

Substituting this into T=LZ=l ftcgk and taking in account (9), we con
clude that (7) holds. On the other side, it is easy to check that the function
T defined by (7) satisfies (6).
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(ii) Suppose that x I' X2, ..., XnE I and YI, Y2, ..., Yn E J are chosen so
that the matrix

(

h(XI, Yd h(x l , Y2) h(x l , Yn»)

H:= h(X2:, Yd h(X2;, Y2) h(X2;, Yn)

hex,,, ytl h(xn, Y2) h(xn, Yn)

(10)

is non-singular. Let us show that the (unique) function S: Ix J -.IR of the
form (1) satisfying 2n functional conditions

S(X j ' • ) = h(xj , • ) and (1 ~j~n) (11)

can be written as a matrix product

(

h(Xl, Y»)
-I h(x 2 , y)

S(x,y)=(h(x,Yt),h(x'Y2), ..·,h(x,Yn»·H. ; .

h(xn , y)

(12)

We can proceed analogously as in part (i). If S is as in (1) and satisfies
(11), then we can compute g I' g 2, ... , gnand}; , .h., ..., In from the systems

n

h(xj , .) = L ftA xj )gk
k~1

and
n

h( ., Yj) = L gk(Yj) h
k~1

(1 ~j~n)

and conclude that (12) holds. Conversely, S from (12) obviously satisfies
(11 ).

Remark 3. Neuman [5] showed that if the matrix H from (10) is
singular for each x I' X2, ..., XnE I and each YI, Y2, ... , Yn E J, then h is of the
form

n'

hex, y) = L hex) gk(Y)
k~1

for some n' < n.

Consequently, for each function h not permitting any exact representation
(1), we can choose XI' X2, ... , xnEI and YI, Y2, ... , YnEJ so that the sum S
in (12) is well-defined.

3. ERROR REPRESENTATION

After introducing the approximating sums T and S in Section 2, we now
turn our attention to the problem of representation of the errors h - T and
h-S.
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Recall first the well-known Lagrange formulas

381

and

where to, t], ....,tn , t, ~EI and tj=l-tj (l~i<j~n), being valid for each
function z possessing the nth derivative on the interval I. To state our
Lagrange-like formulas for the errors h - T and h - S in approximation
(4), it is convenient to introduce the following "remainder" determinants

h.n-l(Xo, Yo) h,,-ly(XO' Yo)

h"n(x, Yo) h ..y(x, Yo)

and

h(xo, Yo)

h.(xo, Yo)

h,,(xo, Yo)

hx,(xo, Yo)

hyn-I(Xo, Yo)

h•.,,,,-I(Xo, Yo)

hXn-lyn-I(Xo, Yo)

h.nyn-l(X, Yo)

hy"'(xo, y)

h<y"'(xo, y)

hXn-1.l"'(Xo, y)
h ..yn(x, y)

(15)

h(xn , yd h(xn , Yz)

hAx, YI) h"n(x, Y2)

ds(x, y) :=det

h(XI' yd

h(X2' YI)

h(x l , Y2)

h(x2 , Y2)

h(xj,Yn) h,n(x I , y)

h(xz, Yn) h,,,,(X2' y)
(16)

h(xn, Yn) h,n(xn , y)

h ..(.x, Yn) hxn.".(x, y)

THEOREM 1. Let Xo E I and Yo E J be chosen so that the matrix
Wn(xo, Yo) is non-singular. Define T and d T by (7) and (15), respectively.
Then for each x E I and Y E J, the difference h(x, y) - T(x, y) can be
represented as

where ~ = ~(x, y) lies between X o and x, while yt = yt(x, y) lies between Yo
and y.

Proof In view of (6), the function A:= h - T satisfies

640/76/3·7

and (0 ~j~n -1). (18 )
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Thus we can apply (13) to the function z = A( ., y) with a fixed Y E J and
conclude that

(19)

where ~ = ~(x, y) lies between X o and x. It follows from the second part of
(18) that A<"yJ(-, Yo)=O, for each O~j~n-1. Now applying (13) to the
function z = A<,,(~,.) with a fixed ~ E I, we obtain

(20)

(21 )

where '1 = IJ(~, y) lies between Yo and y. Substituting (20) into (19), we
observe that (17) holds if

dT(~' '1) J' J' )
h<,,}"( '" '1) - T",},,( ", '1 .

det Wn(XO' Yo)

However, the last equality follows from definitions (7), (15) and from an
elementary proposition of matrix theory,

If A n= [aijJ7.j~l and A n+\ = [a,jJ7.;~l and ifdetAn#O, then

det A n + 1

det An
(22)

Thus the proof is complete.

COROLLARY 1. Let X o E I and Yo E J be chosen so that the matrix
Wn(Xo, Yo) is non-singular. Define T by (7). Then the following asymptotic
formula holds

lim h(x, y)- T(x, y)

x~xo (x -xot (y - Yot
y -+ YO

det Wn + \(xo, Yo)
(nl)l. det Wn(Xo, Yo)'

(23)

Proof If x -+ X o and y -+ Yo in (17), then ~ -+ X O, '1 -+ Yo and therefore
by continuity, dT(~' '1) -+ dT(xo ' Yo) = det Wn+ I (xo, Yo), which proves (23).

THEOREM 2. Let Xl' Xl' ... , XnE I and Yl> Yl' ..., Yn EJ be chosen so that
the matrix H in (10) is non-singular. Define S and by ds by (12) and (16),
respectively. Then for each x E I and y E J, the difference h(x, y) - S(x, y)
can be represented as

(24)
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where ~ = ~(x, y) and '1 = '1(x, y) lie in the minimal subintervals of I and J
containing all the points x, Xl' ... , X n and y, Yl' ... , Yn' respectively.

Proof In view of (II), the function J1. := h - S satisfies

and (1 ~j~ n). (25)

Thus we can apply (14) to the function z = J1.( " y) with a fixed Y E J and
conclude that

J1.,.n(~, y) rrn
J1.(x, y)= 1 • (X-Xk ),

n. k= 1

where ~ = ~(x, y) lies in the subinterval of I mentioned above. It follows
from the second part of (25) that J1. ...(-, Yj) = 0, for each 1~j ~ n. Now
applying (14) to the function z = J1.xn(~,·) with a fixed ~ E I, we obtain

( ]: )_J1.,.nyn(~,'1)·rrn ( _,)
/lx" "', Y -, Y h,

n. k~ I

where '1 = '1(~, y) lies in the subinterval of J mentioned above. Conse
quently, (24) holds if

(26 )

However, the last equality follows from definitions (12), (16) and from
the rule (22).

The proof is complete.

Remark 3. The reader might feel the lack of some convergence formula
like (23) which could illustrate the asymptotic behavior of the error h - S.
It is due to the fact that we cannot arrange the behavior of x and Y so that
the "unknowns" ~ and '1 in (24) may converge to some definite limits.
Nevertheless, one can propose for example, the problem of determining n2

limits

1
. h(x, y) - S(x, y)
1m ,

X-Xp (x - xp)(Y - Yq )
.v -+ Yq

p, q E {l, 2, ..., n }.

We are in doubt whether any "reasonable" formulas for these limits exist
at all.

Let us finish this section by proving a new criterion for decompositions
(l) mentioned above in Remark 1.
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THEOREM 3. Let X o E I and Yo E J be chosen so that the matrix
WnCl:"o, Yo) is non-singular. Then the function h is of the form (1), with some
components h E Cn(I) and gk E Cn(J), if and only if the determinant d T from
(15) satisfies dT-=O on Ix J.

Proof If h is as in (l), then the (n + 1) x (n + 1)-matrix from (15) can
be written as the product of the (n + 1) x n-matrix

!J (xo) h(xo) f,,(x o)

f'1(XO) f;(x o) f~(xo)

f~n - 1)(xo) f~n-I)(xo) f~n-I)(xo)

f~n)(x ) f~n)(x ) f~n)(x)

times the n x (n + 1)-matrix

(

gICVO) g'I(Yo)

g2(YO) g;(yo)
· .· .· .

gn(YO) g~(yo)

... gin -1)(yO) g~n)(y))

... g~n-l)(yo) g~nJ(y)

. . .'. .. .
. .. g~n - IJ(yO) g~n)(y)

Since the rank of such a product does not exceed n, the common size of
both the factors, we have d T -= O. Conversely, if d T -= 0, then Theorem 1
implies that h -= T. Since T is of type (1), the proof is complete.

Remark 4. Using Theorem 2, one can clearly obtain another new
criterion for decompositions (1) in the form ds -= O. However, this result
seems to have no essential adventage in comparison with a result of
Neuman [5]: If the matrix H in (10) is non-singular, then h is of the form
(1) if and only if the determinant

h(x l , yd h(x l ,12) h(x 1 , Yn) h(x l , y)

h(x2, YI) h(x2, 12) h(x2' Yn) h(X2' y)

det

h(xn, yd h(xn,12) h(xn, Yn) h(xn, y)

h(x, YI) h(x, Y2) h(x, Yn) h(x, y)

vanishes for each (x, Y) E I x J, which does not even require any smoothness
restriction on the function h. (Compare the last determinant with that
from (16).)
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4. ERROR ESTIMATION

385

It is clear from the coincidence conditions (6) and (11) that the most
effective estimates of the errors Ih - TI and Ih - SI we may expect should
be of the form

Ih(x, y) - T(x, y)1 ::::; cxT(x, y) I(x - xoHy - YoW

and

n

Ih(x, y)-S(x, y)1 ::::;cxs(x, y) n I(x-xd(y- ydl
k~ 1

(xEI, YEJ) (27)

(xEI, YEJ), (28)

where CXT and CXs are some bounded functions (or even constants). In fact,
the Lagrange-like formulas (17) and (24) ensure that (27) and (28) are
valid with

(29)

and

(30)

respectively, where I(x l , •••, x n, x) and J(YI, ..., Yn' y) denote the sub
intervals mentioned in the statement of Theorem 2. Let us emphasize that
the estimates (27) and (28) with the factors (29) and (30) are applicable
whenever the sums T and Sin (7) and (12) are well-defined (without any
supplementary restriction like (5) on the approximated function h).
Moreover, for the sake of numerical applications, the sup-norms in (29)
and (30) can be easily estimated by using the sup-norms of all the functions
that occur in the determinants (15) and (16)-see Corollary 2 below.

In what follows, we use the symbol II ·11 to denote the sup-norm of
various matrices, scalar-, and matrix-valued, one- and two-place functions.
To avoid any confusion, we now list a few examples:

IIAII =max{laijl: 1 ::::;i,j::::;n} if A is a constant matrix [aij]7,j~I'

Ilh(·, ·)11 =sup{lh(x, y)1 :xEI and YEJ},

Ilh(·, y)1I =sup{lh(x, Y)I :XEI},

IIA(x, . )11 = sup{ IIA(x, y)1I : Y E J},

etc.

640/76/3-8
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(32)

COROLLARY 2. (i) Let X o E I and Yo E J be chosen so that the matrix
Wn(Xo, Yo) is nonsingular. Define T by (7). Then the estimate (27) holds with
a constant factor aT equal to

(ii) Let Xl> x 2, ...,xnEI and YI, Y2,"" YnEJ be chosen so that the
matrix H in (10) is non-singular. Define S by (12). Then the estimate (28)
holds with a constant factor as equal to

_ Ilh<"y.('" )11 + IIH-III L:7= I Ilhx"(', Yi)11 L7~ I Ilhy"(xj ,. )11
as - (n!)2

Proof Part (i) immediately follows from formulas (17) and (21), where
T<"y. is computed from (7). Similarly, part (ii) follows from (24) and (26),
where Sx.y" is computed from (12). The proof is complete.

Although the bounds (31) and (32) are available for numerical calcula
tions, their disadvantage (with respect to the theory of Wronski matrices
(2)) is evident: The values of(31) and (32) are non-zero in general even if
the function h satisfies condition (3) of Theorem A (then of course,
h == T== S). This circumstance leads to the following question (in our
opinion, an important one): Is it possible to derive any other estimates of
type (27) and (28), more "responsive" to the condition (3)? Starting from
the representation formulas (17), (23), and (24), it seems to be natural to
seek some bounds for d T and ds depending on the sup-norm of the ratio
det Wn + tldet Wn • Before we state our results in this direction, let us
emphasize that we need an essential restriction on the function h. Namely,
we will assume that the matrix Wn is non-singular at each point of the
rectangle I x J (see the first part of condition (5)).

THEOREM 4. Suppose that h satisfies (5) for some constant B> O. Choose
X o E I, Yo E J and define T by (7). Then the estimate (27) holds with

where the constants K[, K2 are defined by

n -I

K]=IIW;I(·,·)II L Ilhx"yi(·,·)11 and
i~O

n-I
K2 = II W; I( " . )11 L II hxJy•( " . )11·

j~O

(34)
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Proof see Section 6.

To prove the expected approximation property of the sum (12), we need
(besides (5» another supplementary assumption imposed on the Wronski
like matrices

hy"'-l(x l , Y»)

". hl'"-I(~2' y)

... hy"'-I(xn, y)

and

h(x, Yn) )
h)x, Yn)

hT"-'(~' Yn)

Namely, we will assume that at least one of these matrices is non-singular
at each point of the corresponding interval lor J, respectively. It is clearly
no loss of generality to assume that

det W" .. xJy) # 0 for each Y E J. (35)

THEOREM 5. Suppose that h satisfies (5) for some constant e > O. Suppose
also that XI' X2' ..., xnEI and YI' Y2' ..., YnEJ are chosen so that the matrix
H in (10) is non-singular and that (35) holds. Denote by ldx) and 12(Y) the
lengths of the minimal subintervals containing all the points x, XI' X2, ..., Xn
and Y, YI' Y2, ... , Yn' respectively. Define S by (12). Then the estimate (28)
holds with

(36)

where the constants K 3 , K 4 are defined by

n-I
X L: Ilhx"yi (', . )11

;=0

n

X L: Ilhy"'(xj " )11·
j=1

(37)
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Proof see Section 6.

Remark 5. Asymmetry of the constants III (37) is due to the asym
metric condition (35).

5. BOUNDS FOR FUNCTIONAL DETERMINANTS

In order to make the main idea of our proofs of Theorems 4 and 5
more readable, we now separately discuss some needed estimates for
determinants that depend on a system of functions in one variable.

Throughout this Section, let Z1, ... , ZnEe n(/) be a fixed n-tuple of scalar
functions such that their Wronski matrix

Zn(t) )
z~(t)

z~n _: I)(t)

is non-singular at each point t of the interval I = [a, b]. Suppose also that
the points to, II' ... , In E I are fixed and that the (constant) matrix

(

ZI(td z2(td zn(td)
._ ZI(t 2) Z2(t 2) Zn(t2)

Z.-. " .. . .. . .
ZI(tn) Z2(l n) ... Zn(l n)

is non-singular. Put w(t) := det W(t) and define

Z(I) )
z'( t)

zln;(t) ,

(38 )

1
t/J(t) := -(-)

w to

Z1(to) Z2(tO) Zn(tO) z(to)

Z'I (to) z;(to) Z~(t) z'(to)

·det (39)
z\n-I)(to) z~n-l)(to) z~n - 1)(tO) z(n-I)(to)

z\n)(t ) z~n)(t) z~n)(t ) z(n)( t)
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1
()(t) :=--. det

det Z

Zt(td z2(td

ZI(t2) Z2(t2)

ZI(tn) Z2(tn)
z\n)(t) z~n)(t)

Z( t I)

z(t2)

(40)

for a given function Z E Cn(I). The aim of our considerations is to estimate
the values of t/J and () by means of the sup-norm of q>.

Note that (38) can be considered as a linear non-homogeneous differen
tial equation of order n with respect to the "unknown" z. The well-known
method of variation of parameters shows that each solution Z can be
written in the form

where Cn W- I denotes the nth column of the matrix W- I and C E IRn is
arbitrary. In view of a basic determinant property, it is easily seen from
(39) and (40) that the functions t/J and () do not depend on the choice of
the vector C in (41). To calculate t/J, it is convenient to put C = O. In fact,
the function

zo(t):= (Zl(t), ..., zn(t»·r en W-I(s) q>(s) ds
to

satisfies

(42)

Z~j)(t) = (z\J)(t), ... , z~j)(t»·rCnW-1(s) q>(s) ds
to

and

(l~j~n-l)

z~n)(t)=q>(t)+(z\n)(t),...,z~n)(t»·r cnW-I(s)q>(s)dI', (43)
10

hence zo(to) = z~(to) = ... = z~n -1)(to) = O. Substituting z = Zo into (39), we
therefore conclude that t/J(t) = z~n)(t), for each tEl. Consequently, formula
(43) immediately yields the following.

LEMMA 1. The inequality

holds for each tEl.
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Proof see above.
To estimate the function e, we first utilize the rule (22) and observe

that

(

Z(t l »)
O(t) = z(n)(t) _ (z;n)(t), ... , z~n)(t»). Z-I. Z(~2) .

z(tn)

(44)

Put here z = Zo again, where Zo is defined by (42) with to replaced by any
tj , say to=t l . In view of (42) and (43), we have

(j=I, ... ,n)

and

Iz~n)(t)I~IICP(')II(I+IIW-I(')11ktllzkn)(t)I'lt-tll) (tEl).

Consequently, formula (44) with z = Zo yields the following.

LEMMA 2. Denote by l(t) the length of the minimal subinterval containing
all the points t, t l , t2, ..., tn' The inequality

holds for each t E [.

Proof see above.

6. PROOFS OF THEOREMS 4 AND 5

Now we are in position to prove both the approximation theorems
stated in the end of Section 4.

Proof of Theorem 4. To find some relationship between the Wronskian
det Wn + I and the determinant d T from (15), we introduce an "inter
mediate" determinant

d(x, y)

h(xo, y) hy(xo, y) hyn-'(Xo, y) hyn(xo, y)

hAxo, y) hxixo, y) hxy"-'(XO , y) hx.v"(xo, y)
:=det

hxn-I(Xo, y) hXn-ly(Xo, y) hXn-lyn-l(Xo, y) hxn-lyn(Xo, y)

hAx, y) h""y(x, y) hxny"-'(X, y) hxny"(x, y)
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For each fixed Y E J, Lemma 1 with Zi = hl"-'( " y), Z = hy"( " y) leads to the
conclusion that the estimate

holds for each x E I if K I is as in (34 ). Now for each fixed x E I, we can
apply Lemma 1 secondly, in this case with Zj = hxj-I(xo, . ), Z = hAx, . ) and
conclude that the estimate

holds for each yEJ if K 2 is as in (34). In view of G-condition (5), it follows
from (45) and (46) that the inequality

I
dT(X, y) I

d W ( )
~G(1 + K1 Ix-xol)(l +K2 Iy- Yol)

et n Xo, Yo

holds at each point (x, y)ElxJ. By Theorem 1, the last estimate yields
(27), with fJ. T as indicated in (33). The proof is complete.

Proof of Theorem 5. Let us introduce another "intermediate" determi
nant

For each fixed yEJ, Lemma 2 with Z;=h"i-l(-, y), z=hy"(" y) and tk=Xk
leads to the conclusion that the estimate

I d(x,y) 1~lldetWn+I("Y)II(1+K3/(X)) (47)
det WXI • ". xJy) det Wn ( " y)

holds for each x E I if K 3 is as in (37). Now for each fixed x E I, we can
apply Lemma 1 secondly, in this case with Zj = h(xj , .), Z = h(x, .) and
tk = Yk to conclude that the estimate

I ds(X'Y)I~11 d(x,·) II (l+K4 /(y))
det H det W~l. ,", xn<· )

(48)
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holds for each y E J if K4 is as in (37). In view of a-condition (5), it follows
from (47) and (48) that the inequality

holds at each point (x, y) E I x J. By Theorem 2, the last estimate yields
(28), with I1. s as indicated in (36). The proof is complete.
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